File name: Pandora162s1_Brussels-Uccle_20201212_L2Fit_fwvt1c19d20200918p1-8.txt File generation date: 20250702T140539.4Z Data description: Level 2 spectral fitting results file Data file version: fwvt1c19p1-8 Local principal investigator: C. Hermans Network principal investigator: Alexander Cede Instrument type: Pandora Instrument number: 162 Spectrometer number: 1 Processing software version used: BlickP v1.8.75 Instrument operation file used: Pandora162_OF_v5d20191031.txt Instrument calibration file used: Pandora162s1_CF_v19d20200918.txt Level 1 file used: Pandora162s1_Brussels-Uccle_20201212_L1_smca1c19d20200918p1-8.txt Full location name: Uccle (BIRA-IASB, KMI-IRM) Short location name: Brussels-Uccle Country of location: Belgium Location latitude [deg]: 50.7980 Location longitude [deg]: 4.3580 Location altitude [m]: 107 Local noon date: 20201212 Notes on s-number (L1 configuration): Corrections NOT applied although requested by the s-number are dark map for dark correction (replaced by immediate dark method), latency correction, matrix method stray light correction (replaced by simple method) Data caveats: None First and last pixel inside fitting window: 1648 1798 Nominal wavelengths inside fitting window [nm]: 492.0591 492.1798 492.3005 492.4213 492.5419 492.6626 492.7833 492.9039 493.0246 493.1452 493.2658 493.3863 493.5069 493.6274 493.7480 493.8685 493.9890 494.1094 494.2299 494.3503 494.4708 494.5912 494.7115 494.8319 494.9523 495.0726 495.1929 495.3132 495.4335 495.5538 495.6740 495.7943 495.9145 496.0347 496.1549 496.2750 496.3952 496.5153 496.6354 496.7555 496.8756 496.9957 497.1157 497.2358 497.3558 497.4758 497.5957 497.7157 497.8356 497.9556 498.0755 498.1954 498.3152 498.4351 498.5549 498.6748 498.7946 498.9143 499.0341 499.1539 499.2736 499.3933 499.5130 499.6327 499.7524 499.8720 499.9917 500.1113 500.2309 500.3504 500.4700 500.5896 500.7091 500.8286 500.9481 501.0676 501.1870 501.3065 501.4259 501.5453 501.6647 501.7841 501.9034 502.0227 502.1421 502.2614 502.3807 502.4999 502.6192 502.7384 502.8576 502.9768 503.0960 503.2152 503.3343 503.4534 503.5725 503.6916 503.8107 503.9298 504.0488 504.1678 504.2868 504.4058 504.5248 504.6438 504.7627 504.8816 505.0005 505.1194 505.2383 505.3571 505.4759 505.5948 505.7135 505.8323 505.9511 506.0698 506.1886 506.3073 506.4260 506.5446 506.6633 506.7819 506.9005 507.0191 507.1377 507.2563 507.3748 507.4934 507.6119 507.7304 507.8489 507.9673 508.0858 508.2042 508.3226 508.4410 508.5594 508.6777 508.7961 508.9144 509.0327 509.1510 509.2693 509.3875 509.5057 509.6240 509.7422 509.8603 509.9785 --------------------------------------------------------------------------------------- Column 1: Two letter code of measurement routine Column 2: UT date and time for center-time of measurement, yyyymmddThhmmssZ (ISO 8601) Column 3: Fractional days since 1-Jan-2000 midnight for center-time of measurement Column 4: Routine count (1 for the first routine of the day, 2 for the second, etc.) Column 5: Repetition count (1 for the first set in the routine, 2 for the second, etc.) Column 6: Total duration of measurement set in seconds Column 7: Data processing type index Column 8: Solar zenith angle for center-time of measurement in degree Column 9: Solar azimuth for center-time of measurement in degree, 0=north, increases clockwise Column 10: Lunar zenith angle for center-time of measurement in degree Column 11: Lunar azimuth for center-time of measurement in degree, 0=north, increases clockwise Column 12: Pointing zenith angle in degree, absolute or relative (see next column), 999=tracker not used Column 13: Zenith pointing mode: zenith angle is... 0=absolute, 1=relative to sun, 2=relative to moon Column 14: Pointing azimuth in degree, increases clockwise, absolute (0=north) or relative (see next column), 999=tracker not used Column 15: Azimuth pointing mode: like zenith angle mode but also fixed scattering angles relative to sun (3) or moon (4) Column 16: Fitting result index: 0=no error or warning, 1, 2=warning, >2=error Column 17: Number of function evaluations used, 0=linear fitting or fitting not successful or no fitting done Column 18: rms of unweighted fitting residuals, -9=fitting not successful Column 19: Normalized rms of fitting residuals weighted with independent uncertainty, -9=fitting not successful or no uncertainty used Column 20: Expected rms based on independent uncertainty, -9=fitting not successful or no uncertainty given Column 21: Expected normalized weighted rms based on independent uncertainty, -9=fitting not successful or no uncertainty given Column 22: Water vapor slant column amount [moles per square meter], -9e99=fitting not successful Column 23: Independent uncertainty of water vapor slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -3=spectral fitting was done, but no independent uncertainty could be retrieved, -5=no independent uncertainty input was given, -9=spectral fitting not successful Column 24: Structured uncertainty of water vapor slant column amount [moles per square meter], -7=not given since method "MEAS" was chosen, -9=spectral fitting not successful Column 25: Common uncertainty of water vapor slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -6=no common uncertainty input was given, -7=not given since method "MEAS" was chosen, -9=spectral fitting not successful Column 26: rms-based uncertainty of water vapor slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -3=spectral fitting was done, but no rms-based uncertainty could be retrieved, -9=spectral fitting not successful Column 27: Water vapor effective temperature [K] Column 28: Independent uncertainty of water vapor effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -2=no temperature fitting was requested and output for effective temperature and structured uncertainty of it is based on f-code, -3=spectral fitting was done, but no independent uncertainty could be retrieved, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -5=no independent uncertainty input was given, -9=spectral fitting not successful Column 29: Structured uncertainty of water vapor effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -9=spectral fitting not successful Column 30: Common uncertainty of water vapor effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -2=no temperature fitting was requested and output for effective temperature and structured uncertainty of it is based on f-code, -3=spectral fitting was done, but no common uncertainty could be retrieved, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -6=no common uncertainty input was given, -9=spectral fitting not successful Column 31: Effective water vapor fitting wavelength [nm], -9=fitting not successful Column 32: Diffuse correction applied before fitting at effective fitting wavelength for water vapor [%], 0=no diffuse correction applied or fitting not requested, >0=measured diffuse correction, <0=(negative value of) calculated diffuse correction Column 33: Nitrogen dioxide slant column amount [moles per square meter], -9e99=fitting not successful Column 34: Independent uncertainty of nitrogen dioxide slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -3=spectral fitting was done, but no independent uncertainty could be retrieved, -5=no independent uncertainty input was given, -9=spectral fitting not successful Column 35: Structured uncertainty of nitrogen dioxide slant column amount [moles per square meter], -7=not given since method "MEAS" was chosen, -9=spectral fitting not successful Column 36: Common uncertainty of nitrogen dioxide slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -6=no common uncertainty input was given, -7=not given since method "MEAS" was chosen, -9=spectral fitting not successful Column 37: rms-based uncertainty of nitrogen dioxide slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -3=spectral fitting was done, but no rms-based uncertainty could be retrieved, -9=spectral fitting not successful Column 38: Nitrogen dioxide effective temperature [K] Column 39: Independent uncertainty of nitrogen dioxide effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -2=no temperature fitting was requested and output for effective temperature and structured uncertainty of it is based on f-code, -3=spectral fitting was done, but no independent uncertainty could be retrieved, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -5=no independent uncertainty input was given, -9=spectral fitting not successful Column 40: Structured uncertainty of nitrogen dioxide effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -9=spectral fitting not successful Column 41: Common uncertainty of nitrogen dioxide effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -2=no temperature fitting was requested and output for effective temperature and structured uncertainty of it is based on f-code, -3=spectral fitting was done, but no common uncertainty could be retrieved, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -6=no common uncertainty input was given, -9=spectral fitting not successful Column 42: Effective nitrogen dioxide fitting wavelength [nm], -9=fitting not successful Column 43: Diffuse correction applied before fitting at effective fitting wavelength for nitrogen dioxide [%], 0=no diffuse correction applied or fitting not requested, >0=measured diffuse correction, <0=(negative value of) calculated diffuse correction Column 44: Ozone slant column amount [moles per square meter], -9e99=fitting not successful Column 45: Independent uncertainty of ozone slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -3=spectral fitting was done, but no independent uncertainty could be retrieved, -5=no independent uncertainty input was given, -9=spectral fitting not successful Column 46: Structured uncertainty of ozone slant column amount [moles per square meter], -7=not given since method "MEAS" was chosen, -9=spectral fitting not successful Column 47: Common uncertainty of ozone slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -6=no common uncertainty input was given, -7=not given since method "MEAS" was chosen, -9=spectral fitting not successful Column 48: rms-based uncertainty of ozone slant column amount [moles per square meter], -1=cross section is zero in this wavelength range, -3=spectral fitting was done, but no rms-based uncertainty could be retrieved, -9=spectral fitting not successful Column 49: Ozone effective temperature [K] Column 50: Independent uncertainty of ozone effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -2=no temperature fitting was requested and output for effective temperature and structured uncertainty of it is based on f-code, -3=spectral fitting was done, but no independent uncertainty could be retrieved, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -5=no independent uncertainty input was given, -9=spectral fitting not successful Column 51: Structured uncertainty of ozone effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -9=spectral fitting not successful Column 52: Common uncertainty of ozone effective temperature [K], -1=temperature fitting was requested, but cross section is zero in this wavelength range, -2=no temperature fitting was requested and output for effective temperature and structured uncertainty of it is based on f-code, -3=spectral fitting was done, but no common uncertainty could be retrieved, -4=temperature fitting was requested, but differential optical depth is too small to retrieve the temperature, -6=no common uncertainty input was given, -9=spectral fitting not successful Column 53: Effective ozone fitting wavelength [nm], -9=fitting not successful Column 54: Diffuse correction applied before fitting at effective fitting wavelength for ozone [%], 0=no diffuse correction applied or fitting not requested, >0=measured diffuse correction, <0=(negative value of) calculated diffuse correction Column 55: Molecular scattering air mass factor used for molecular scattering subtraction before the fitting Column 56: Estimated uncertainty of molecular scattering air mass factor, -9=molecular scattering was not subtracted before the fitting Column 57: Lower limit used for wavelength scaling [nm] Column 58: Upper limit used for wavelength scaling [nm] Column 59: Order of smoothing polynomial Column 60: Smoothing polynomial coefficient, order 0 Column 61: Independent uncertainty of smoothing polynomial coefficient, order 0, -9=fitting not successful Column 62: Structured uncertainty of smoothing polynomial coefficient, order 0, -9=fitting not successful Column 63: Common uncertainty of smoothing polynomial coefficient, order 0, -9=fitting not successful Column 64: rms-based uncertainty of smoothing polynomial coefficient, order 0, -9=fitting not successful Column 65: Smoothing polynomial coefficient, order 1 Column 66: Independent uncertainty of smoothing polynomial coefficient, order 1, -9=fitting not successful Column 67: Structured uncertainty of smoothing polynomial coefficient, order 1, -9=fitting not successful Column 68: Common uncertainty of smoothing polynomial coefficient, order 1, -9=fitting not successful Column 69: rms-based uncertainty of smoothing polynomial coefficient, order 1, -9=fitting not successful Column 70: Mean value of measured data inside fitting window [same units as measurements] Column 71: Wavelength change polynomial coefficient, order 0 Column 72: Independent uncertainty of wavelength change polynomial coefficient, order 0, -9=fitting not successful Column 73: Structured uncertainty of wavelength change polynomial coefficient, order 0, -9=fitting not successful Column 74: Common uncertainty of wavelength change polynomial coefficient, order 0, -9=fitting not successful Column 75: rms-based uncertainty of wavelength change polynomial coefficient, order 0, -9=fitting not successful Column 76: L1 based wavelength change coefficient, order 0, -9=no L1 wavelength change determination Column 77: L1 based wavelength change coefficient, order 1, -9=no L1 wavelength change determination Column 78: L2Fit data quality flag: 0=assured high quality, 1=assured medium quality, 2=assured low quality, 10=not-assured high quality, 11=not-assured medium quality, 12=not-assured low quality Column 79: Sum over 2^i using those i, for which the corresponding L2Fit data quality parameter exceeds the DQ1 limit, 0=L1 data quality above 0, 1=Spectral fitting was not successful, 2=Wavelength shift too large, 3=Normalized rms of fitting residuals weighted with independent uncertainty too large Column 80: Sum over 2^i using those i, for which the corresponding L2Fit data quality parameter exceeds the DQ2 limit (same parameters as for DQ1) Column 81: L1 data quality flag: 0=assured high quality, 1=assured medium quality, 2=assured low quality, 10=not-assured high quality, 11=not-assured medium quality, 12=not-assured low quality Column 82: Sum over 2^i using those i, for which the corresponding L1 data quality parameter exceeds the DQ1 limit, 0=Saturated data, 1=Too few dark counts measurements, 2=No temperature given or effective temperature too different from the reference temperature, 3=Dark count too high, 4=Unsuccessful dark background fitting, 5=The dark count differs significantly from the dark map for too many pixels, 6=Absolute value of estimated average residual stray light level too high, 7=Although attempted, no wavelength change could be retrieved, 8=Absolute value of retrieved wavelength shift too large, 9=Retrieved wavelength shift differs too much from the shift predicted by the effective temperature Column 83: Sum over 2^i using those i, for which the corresponding L1 data quality parameter exceeds the DQ2 limit (same parameters as for DQ1) Column 84: Atmospheric variability [%], 999=no atmospheric variability was determined Column 85: Wavelength effective temperature [°C], 999=no effective temperature given Column 86: Estimated average residual stray light level [%] (only valid for stray light correction methods 2 and higher) Column 87: Retrieved wavelength shift from L1 data [nm], -9=no wavelength change determination Column 88: Retrieved total wavelength shift [nm], -9=no wavelength change fitting Column 89: Number of bright count cycles Column 90: Number of dark count cycles Column 91: Effective position of filterwheel #1, 0=filterwheel not used, 1-9 are valid positions Column 92: Effective position of filterwheel #2, 0=filterwheel not used, 1-9 are valid positions Column 93: Sum over 2^i, 0=spectra were interpolated in time, 1=spectra are corrected for off-target signal Column 94: Integration time [ms] Column 95: Spectrometer control temperature [°C], 999=no temperature signal Column 96: Auxiliary spectrometer temperature [°C], 999=no temperature signal Column 97: Temperature in head sensor [°C], 999=no temperature signal Column 98: Temperature at electronics board 1 [°C], 999=no temperature signal Column 99: Temperature at electronics board 2 [°C], 999=no temperature signal Column 100: Humidity in head sensor [%], -9=no humidity signal Column 101: Pressure in head sensor [hPa], -9=no pressure signal Columns 102-252: Unweighted slant column residuals for each pixel inside the fitting window multiplied by 1e5, 9e5=pixel was not used for fitting Columns 253-403: Normalized slant column residuals weighted with independent instrumental uncertainty for each pixel inside the fitting window multiplied by 1e5, 9e5=pixel was not used for fitting, 0=no independent instrumental uncertainty was given ---------------------------------------------------------------------------------------